- Tentative Specification
- ✓ Preliminary Specification
- Specification Approval

Specification For SID 2.66" BWR EPD

Model Name: JS0266HNP16-TNG-A0

Version:V0.1

SID	PREPARED BY	CHECKED BY	APPROVED BY
SIGNATURE	JY. Guo		
DATE	2022.10.18		

	SIGNATURE	DATE
CUSTOMER APPROVAL		
	Notes:	

Notes:

- 1. Please contact SID before assigning your product based on this module specification.
- 2. To improve the quality of product, and this product specification is subject to change without any notice.

REVISION RECORD

Rev No.	Rev date	Contents	Remarks
0.1	20221018	First release	Preliminary

CONTENTS

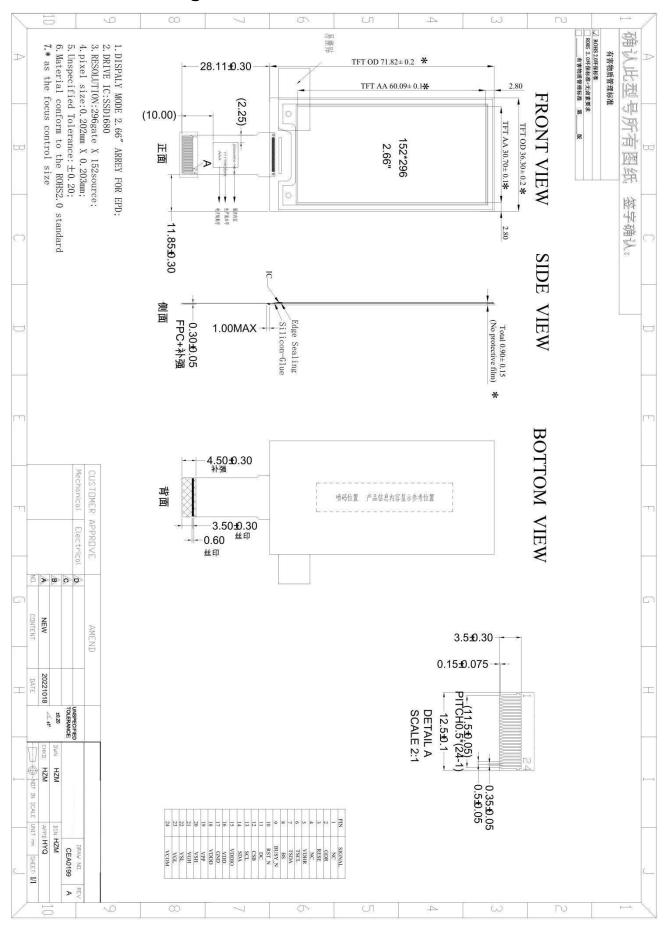
1 General Description	4
2. Features	4
3. Application	4
4. Mechanical Specifications	4
5. Mechanical Drawing of EPD module	5
6. Input/Output Terminals	6
7. MCU Interface	7
8. Temperature sensor operation	10
9. Command Table	11
10. Data Entry Mode Setting (11h)	22
11. Reference circuit	23
12. ABSOLUTE MAXIMUM RATING	25
13. DC CHARACTERISTICS	25
14. Serial Peripheral Interface Timing	26
15. Power Consumption	26
16. Typical Operating Sequence	27
17. Optical characteristics	28
18. HANDLING, SAFETY AND ENVIROMENTAL REQUIREMENTS	30
19. Reliability test	32
20. Block Diagram	33
21. PartA/PartB specification	33
22. Point and line standard	34

1. General Description

SE0266HNP16-A0 is an Active Matrix Electrophoretic Display (AMEPD), with interface and a reference system design. The 2.66" active area contains 152×296 pixels, and has 1-bit B/W/R full display capabilities. An integrated circuit contains gate buffer, source buffer, interface, timing control logic, oscillator, DC-DC, SRAM, LUT, VCOM and border are supplied with each panel.

2. Features

- 152×296 pixels display
- High contrast
- High reflectance
- Ultra wide viewing angle
- Ultra low power consumption
- Pure reflective mode
- Bi-stable display
- Commercial temperature range
- Landscape, portrait modes
- Hard-coat antiglare display surface
- Ultra Low current deep sleep mode
- On chip display RAM
- Low voltage detect for supply voltage
- High voltage ready detect for driving voltage
- Internal temperature sensor
- 10-byte OTP space for module identification
- Waveform stored in On-chip OTP
- Serial peripheral interface available
- On-chip oscillator
- On-chip booster and regulator control for generating VCOM, Gate and Source driving voltage
- I2C signal master interface to read external temperature sensor/ built-in temperature sensor


3. Application

Electronic Shelf Label System

4. Mechanical Specifications

Parameter	Specifications	Unit	Remark
Screen Size	2.66	Inch	
Display Resolution	152(H)×296(V)	Pixel	Dpi:125
Active Area	30.70(H)×60.09(V)	mm	
Pixel Pitch	0.202×0.203	mm	
Pixel Configuration	Rectangle		
Outline Dimension	36.3(H)×71.82(V) ×0.9(D)	mm	Without masking fil
Weight	5±0.5	g	

5. Mechanical Drawing of EPD module

6. Input/Output Terminals

Pin#	Single	Description	Remark
1	NC	No connection and do not connect with other NC pins	Keep Open
2	GDR	N-Channel MOSFET Gate Drive Control	
3	RESE	Current Sense Input for the Control Loop	
4	NC	No connection and do not connect with other NC pins	Keep Open
5	VSH2	Positive Source driving voltage	
6	TSCL	I ² C Interface to digital temperature sensor Clock pin	Note 6-6
7	TSDA	I ² C Interface to digital temperature sensor Data pin.	Note 6-6
8	BS1	Bus selection pin	Note 6-5
9	BUSY	Busy state output pin	Note 6-4
10	RES#	Reset signal input.	Note 6-3
11	D/C #	Data /Command control pin	Note 6-2
12	CS#	The chip select input connecting to the MCU.	Note 6-1
13	SCL	Serial clock pin for interface.	
14	SDA	Serial data pin for interface.	
15	VDDIO	Power input pin for the Interface.	
16	VCI	Power Supply pin for the chip	
17	VSS	Ground (Digital)	
18	VDD	Core logic power pin	
19	VPP	Power Supply for OTP Programming	
20	VSH1	Positive Source driving voltage	
21	VGH	Power Supply pin for Positive Gate driving voltage and VSH	
22	VSL	Negative Source driving voltage	
23	VGL	Power Supply pin for Negative Gate driving voltage, VCOM and VSL	
24	VCOM	VCOM driving voltage	

Note 6-1: This pin (CS#) is the chip select input connecting to the MCU. The chip is enabled for MCU communication: only when CS# is pulled LOW.

Note 6-2: This pin (D/C#) is Data/Command control pin connecting to the MCU. When the pin ispulled HIGH, the data will be interpreted as data. When the pin is pulled LOW, the data will be interpreted as command.

Note 6-3: This pin (RES#) is reset signal input.
The Reset is active low.

Note 6-4: This pin (BUSY) is Busy state output pin. When Busy is High ,the operation of chip should not be interrupted and any commands should not be issued to the module. The driver IC will put Busypin High when the driver IC is working such as:

- Outputting display waveform;
- Communicating with digital temperature sensor Note 6-5: This pin (BS1) is for 3-line SPI or 4-line SPI selection. When it is "Low", 4-line SPI is

selected. When it is "High", 3-line SPI (9 bits SPI) is selected.

Note 6-6: If customer don't want to use external temperature sensors, please make TSCL and TSDA tobe ground ,not NC.

7. MCU Interface

7.1 MCU interface selection

This Moudle can support 3-wire/4-wire serial peripheral interface. In the Module, the MCU interface is pin selectable by BS1 pins shown in table 7-1.

Table 7-1: Interface pin assignment for different MCU interfaces

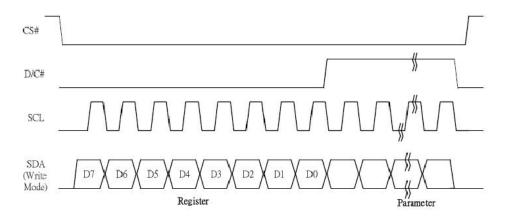
	Pin name							
MCU Interface	BS1	RES#	CS#	D/C#	SCL	SDA		
4-wire serial peripheralinterface (SPI)	L	RES#	CS#	D/C#	SCL	SDI		
3-wire serial peripheral interface (SPI) - 9 bits SPI	Н	RES#	CS#	L	SCL	SDI		

Note:

(1) L is connected to VSS H is connected to VDDIO

7.2 MCU Serial Peripheral Interface (4-wire SPI)

The 4-wire SPI consists of serial clock SCL, serial data SDA, D/C# and CS#. The control pins status in 4-wire SPI in writing command/data is shown in Table 7-2 and the write procedure 4-wire SPI is shown in table 7-2.


Table 7-2: Control pins status of 4-wire SPI

Function	SCL pin	D/C# pin	CS# pin	
Write command	1	Command bit	L	L
Write data	↑	Data bit	Н	L

Note:

- (1) L is connected to VSS and H is connected to VDDIO
- (2) † stands for rising edge of signal
- (3) SDA (Write Mode) is shifted into an 8-bit shift register on every rising edge of SCL in the order D7, D6, ...D0. The level of D/C# should be kept over the whole byte. The data byte in the shiftregister is written to the Graphic Display Data RAM (RAM)/Data Byte register or command Byte register according to D/C# pin.

Figure 7-1 Write procedure in 4-wire SPI mode

In the read operation (Command 0x1B, 0x27, 0x2D, 0x2E, 0x2F, 0x35). After CS# is pulled low, the first byte sentis command byte, D/C# is pulled low. After command byte sent, the following byte(s) read are data byte(s), so D/C# bit is then pulled high. An 8-bit data will be shifted out on every clock falling edge. The serial data SDA bit shifting sequence is D7, D6, to D0 bit. Figure 6-2 shows the read procedure in 4-wire SPI.

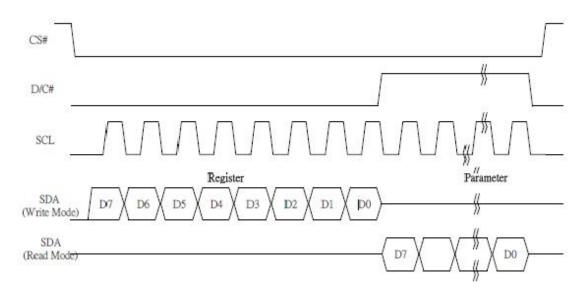


Figure 7-2 Read procedure in 4-wire SPI mode

7.3 MCU Serial Peripheral Interface (3-wire SPI)

The 3-wire SPI consists of serial clock SCL, serial data SDA and CS#. The operation is similar to 4-wire SPI while D/C# pin is not used and it must be tied to LOW. The control pins status in 3-wire SPI is shown in Table 6-3.

In the write operation, a 9-bit data will be shifted into the shift register on every clock rising edge. The bit shiftingsequence is D/C# bit, D7 bit, D6 bit to D0 bit. The first bit is D/C# bit which determines the following byte is command or data. When D/C# bit is 0, the following byte is command. When D/C# bit is 1, the following byte is data. Table 6-3 shows the write procedure in 3-wire SPI

Function	SCL pin	SDI pin	D/C# pin	CS# pin
Write command	ite command		Tie LOW	L
Write data	<u> </u>	Data bit	Tie LOW	L

Table 7-3: Control pins status of 3-wire SPI

Note:

- (1) L is connected to V_{SS} and H is connected to V_{DDIO}
- (2) ↑ stands for rising edge of signal

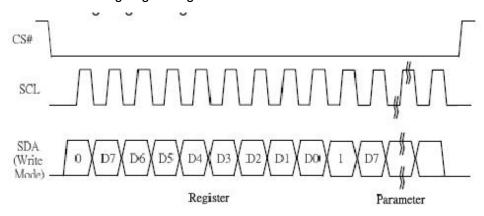


Figure 7-3 Write procedure in 3-wire SPI mode

In the read operation (command 0x1B, 0x27, 0x2D, 0x2E, 0x2F, 0x35). SDA data are transferred in the unit of 9bits. After CS# pull low, the first byte is command byte, the D/C# bit is as 0 and following with the register byte. After command byte send, the following byte(s) are data byte(s), with D/C# bit is 1. After D/C# bit sending fromMCU, an 8-bit data will be shifted out on every clock falling edge. The serial data SDA bit shifting sequence is D7, D6, to D0 bit. Figure 6-4 shows the read procedure in 3-wire SPI.

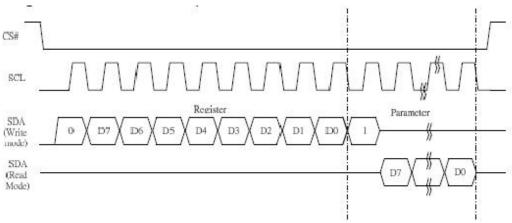


Figure 7-4 Read procedure in 3-wire SPI mode

8. Temperature sensor operation

Following is the way of how to sense the ambient temperature of the module. First, use an external temperature sensor to get the temperature value and converted it into HEX format with below mapping table, then send command 0x1A with the HEX temperature value to the module thru the SPI interface.

The temperature value to HEX conversion is as follow:

1. If the Temperature value MSByte bit D11 = 0, then

The temperature is positive and value (DegC) = + (Temperature value) / 16

2. If the Temperature value MSByte bit D11 = 1, then

The temperature is negative and value (DegC) = \sim (2's complement of Temperature value) /16

Table 8-1: Example of 12-bit binary temperature settings for temperature ranges

12-bit binary (2's complement)	HexadecimalValue	TR Value [DegC]
0111 1111 1111	7FF	128
0111 1111 1111	7FF	127.9
0110 0100 0000	640	100
0101 0000 0000	500	80
0100 1011 0000	4B0	75
0011 0010 0000	320	50
0001 1001 0000	190	25
0000 0000 0100	004	0.25
0000 0000 0000	000	0
1111 1111 1100	FFC	-0.25
1110 0111 0000	E70	-25
1100 1001 0000	C90	-55

9. Command Table

Com	ommand Table														
R/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Descripti	ion		
0	0	01	0	0	0	0	0	0	0	1	Driver Output control	Gate sett	ing		
0	1		A ₇	A ₆	A ₅	A ₄	Аз	A ₂	A ₁	Ao		A[8:0]= 12			
0	1		0	0	0	0	0	0	0	A ₈	-	MUX Gat	e lines se	tting as (A	[8:0] + 1).
0	1		0	0	0	0	0	0 B ₂	0 B ₁	A ₈ B ₀		B[2:0] = 0 Gate scar B[2]: GD Selects th GD=0 [P0 G0 is the output se GD=1, G1 is the output se B[1]: SM Change s SM=0 [P0 G0, G1, 0 interlaced SM=1,	no [POR] nning seq ne 1st outp DR], 1st gate of quence is 1st gate of quence is canning of DR], 32, G32	uence and out Gate output cha G0,G1, G output cha G1, G0, G	nnel, gate 62, G3, nnel, gate 63, G2,
0	0	03	0	0	0	0	0	0	1	1	Gate Driving voltage Control		driving vo		
0	1		0	0	0	A ₄	Аз	A ₂	A ₁	A ₀	Control			0V to 20V	
												A[4:0]	VGH	A[4:0]	VGH
												00h	20	0Dh	15
												03h	10	0Eh	15.5
												04h	10.5	0Fh	16
												05h	11	10h	16.5
												06h	11.5	11h	17
												07h	12	12h	17.5
												08h	12.5	13h	18
												07h	12	14h	18.5
												08h	12.5	15h	19
												09h	13	16h	19.5
												0Ah	13.5	17h	20
												0Bh 0Ch	14 14.5	Other	NA
												LUCII	14.5		

Com	man	d Tal	ble														
	D/C#	_	D7	D6	D5	D4	D3	D2	D1	D0	Comn	nand		Description			
0	0	04	0	0	0	0	0	1	0	0	Source	Driving	voltage	Set Source driving voltage			
0	1		A ₇	A ₆	A ₅	A ₄	Аз	A ₂	A ₁	Ao	Contro	(A)	_	A[7:0] = 41h [POR], VSH1 at 15V			
0	1		B ₇	B ₆	B ₅	B ₄	Вз	B ₂	B ₁	Bo				B[7:0] = A8h [POR], VSH2 at 5V.			
0	1		C ₇	C ₆	C ₅	C ₄	C ₃	C ₂	C ₁	Co	1			C[7:0] = 32h [POR], VSL at -15V Remark: VSH1>=VSH2			
]/B[7]	= 1		00	00				7]/B[7	100)			C[7] = 0,			
VSI	11/VS	SH2	voltad	ge se	tting	from	2.4V	VS				e setting	from 9V	VSL setting from -5V to -17V			
to 8	.8V		111	3	52.0			to	17V		11						
_	B[7:0] 8Eh	_	1/VSH2 2.4	_	3[7:0] AFh	_	/VSH2	-	A/B[7:0] 23h	VS	9 9	A/B[7:0] 3Ch	VSH1/VSH	9[1.0]			
_	8Fh	-	2.5	_	30h	_	.8		24h	+	9.2	3Dh	14.2	0Ah -5 0Ch -5.5			
	90h	_	2.6	_	31h	_	.9		25h	\perp	9.4	3Eh	14.4	0Eh -6			
_	91h 92h	_	2.7	_	32h 33h	_	.1		26h 27h	+	9.6	3Fh 40h	14.6 14.8	10h -6.5			
	93h	_	2.9	_	34h	_	.2		28h		10	41h	15	12h -7			
⊢	94h		3	_	35h		.3		29h	\perp	10.2	42h	15.2	14h -7.5			
_	95h 96h		3.1	_	36h 37h	_	.5		2Ah 2Bh	+	10.4	43h 44h	15.4 15.6	16h -8 18h -8.5			
	97h	-	3.3	-	38h		.6		2Ch	+	10.8	45h	15.8	1Ah -9			
_	98h	_	3.4		39h	_	.7		2Dh	\perp	11	46h	16	1Ch -9.5			
_	99h 9Ah	-	3.5	_	BAh BBh	_	.8		2Eh 2Fh	+	11.2	47h 48h	16.2 16.4	1Eh -10			
	9Bh		3.7	_	BCh		7		30h	\pm	11.6	49h	16.6	20h -10.5			
	9Ch	_	3.8		BDh		.1		31h		11.8	4Ah	16.8	22h -11 24h -11.5			
_	9Dh 9Eh		3.9		BEh BFh	_	.2	-	32h 33h	+	12 12.2	4Bh Other	17 NA	26h -12			
-	9Fh	1 5	4.1		COh		.4		34h		12.4	Other	101	28h -12.5			
_	A0h	_	4.2	_	C1h	_	.5		35h	T	12.6			2Ah -13			
	A1h A2h	_	4.4	_	C2h C3h	_	.6 .7		36h 37h	+	12.8			2Ch -13.5			
	A3h	_	4.5	_	24h	_	.8		38h		13.2			2Eh -14			
_	A4h	_	4.6	_	C5h	_	.9		39h	T	13.4			30h -14.5 32h -15			
	A5h A6h	_	4.7	_	C6h C7h	_	.1		3Ah 3Bh	+	13.6 13.8			34h -15.5			
	A7h		4.9		28h		.2							36h -16			
	A8h		5	_	C9h	_	.3							38h -16.5			
	A9h AAh	_	5.1 5.2		Bh		.5							3Ah -17			
	ABh		5.3	C	Ch	8	.6							Other NA			
	ACh ADh		5.4 5.5	_	Dh Eh		.7										
	AEh	_	5.6	+	ther	_	IA										
		-		-													
														9			
0	0	08	0	0	0	0	1	0	0	0		Code Set	ting	Program Initial Code Setting			
					Bill							rogram	V 22 5. 3				
														The command required CLKEN=1.			
														Refer to Register 0x22 for detail.			
														BUSY pad will output high during operation.			
-			L											ороганоп.			
0	0	09	0	0	0	0	1	0	0	1	Write	Register t	or Initial	Write Register for Initial Code Setting			
0	1		A ₇	A ₆	A ₅	A ₄	A ₃	A ₂	A ₁	Ao		Setting	or minual	Selection			
		-			_	-	-				-	3		A[7:0] ~ D[7:0]: Reserved			
0	1		B ₇	B ₆	B ₅	B ₄	B ₃	B ₂	B ₁	B ₀	-			Details refer to Application Notes of Initial			
0	1		C ₇	C ₆	C ₅	C ₄	C ₃	C ₂	C ₁	C ₀				Code Setting			
0	1		D ₇	D ₆	D ₅	D ₄	D ₃	D ₂	D ₁	D ₀							
0	0	0A	0	0	0	0	1	0	1	0			or Initial	Read Register for Initial Code Setting			
											Code	Setting					

Com	man	d Tal	ole												
R/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Description	on		
0	0	0C	0	0	0	0	1	1	0	0	Booster Soft start		able with Phase 1, Phase 2 and Phase 3		
0	1		1	A ₆	A ₅	A ₄	A ₃	A ₂	A ₁	Ao	Control	for soft start	current and duration setting.		
0	1		1	B ₆	B ₅	B ₄	Вз	B ₂	B ₁	Bo			ft start setting for Phase1		
0	1		1	C ₆	C ₅	C ₄	Сз	C ₂	C ₁	Co			8Bh [POR] ft start setting for Phase2		
0	1		0	0	D ₅	D ₄	Dз	D ₂	-		-	=	9Ch [POR]		
							-						ft start setting for Phase3 96h [POR]		
												D[7:0] -> Du	ration setting		
												_	0Fh [POR]		
													scription of each byte: / B[6:0] / C[6:0]:		
												Bit[6:4	Driving Strength Selection		
												000	1(Weakest)		
												001	2		
												010	3		
												011	4		
												100	5		
												101	6		
												110	7		
												111	8(Strongest)		
													M:- 0#T: 0-#: 10DD		
												Bit[3:0	Min Off Time Setting of GDR [Time unit]		
												0000			
												0011	NA		
												0100			
												0101	3.2		
												0110	3.9		
												0111	4.6		
												1000	5.4		
												1001	6.3		
												1010	7.3		
												1011			
												1100	9.8		
												1101	11.5		
												1110			
												1111	16.5		
												D[5:4 D[3:2	duration setting of phase]: duration setting of phase 3]: duration setting of phase 2]: duration setting of phase 1		
												Bit[1:0	Duration of Phase [Approximation]		
												00	10ms		
												01	20ms		
												10	30ms		
												11	40ms		
0		10	0	0	0	1	0	0	0	0 1	Doon Cloon made	Doon Class	in made Central:		
	0	10	0	0	0	1	0		0		Deep Sleep mode		p mode Control: Description		
0	1		0	0	0	0	0	0	A ₁	A ₀		00	Normal Mode [POR]		
												01	Enter Deep Sleep Mode 1		
												11	Enter Deep Sleep Mode 2		
												enter Deep keep outpo Remark:			
												To Exit Deep Sleep mode, User required			
												to send HWRESET to the driver			

0	0	11	0	0	0	1	0	0	0	1	Data Entry mode setting	Define data entry sequence
0	1	11	0	0	0	0	0	A ₂	A ₁	Ao	Data Entry mode setting	Define data entry sequence A[2:0] = 011 [POR] A [1:0] = ID[1:0] Address automatic increment / decrement setting The setting of incrementing or decrementing of the address counter can be made independently in each upper and lower bit of the address. 00 –Y decrement, X decrement, 01 –Y decrement, X increment, 11 –Y increment, X increment [POR] A[2] = AM Set the direction in which the address counter is updated automatically after data are written to the RAM. AM= 0, the address counter is updated in the X direction. [POR] AM = 1, the address counter is updated in the Y direction.
0	0	12	0	0	0	1	0	0	1	0	SW RESET	It resets the commands and parameters to their S/W Reset default values except R10h-Deep Sleep Mode During operation, BUSY pad will output high. Note: RAM are unaffected by this command.
0	0	14	0	0	0	1	0	1	0	0	HV Ready Detection	HV ready detection A[7:0] = 00h [POR] The command required CLKEN=1 and ANALOGEN=1. Refer to Register 0x22 for detail. After this command initiated, HV Ready detection starts. BUSY pad will output high during detection. The detection result can be read from the Status Bit Read (Command 0x2F).
0	1		0	A ₆	A ₅	A4	0	A ₂	A ₁	Ao		A[6:4]=n for cool down duration: 10ms x (n+1) A[2:0]=m for number of Cool Down Loop to detect. The max HV ready duration is 10ms x (n+1) x (m) HV ready detection will be trigger after each cool down time. The detection will be completed when HV is ready. For 1 shot HV ready detection, A[7:0] can be set as 00h.

0	0	15	0	0	0	1	0	1	0	1	VCI Detection	VCI Detection
0	1	10	0	0	0	0	0	A ₂	A ₁	Ao	T D Stocker	A[2:0] = 100 [POR] , Detect level at 2.3V
								25	42			A[2:0] : VCI level Detect
												A[2:0] VCI level 011 2.2V
												100 2.3V
												101 2.4V
												110 2.5V
												111 2.6V
												Other NA
												The command required CLKEN=1 and ANALOGEN=1 Refer to Register 0x22 for detail. After this command initiated, VCI detection starts. BUSY pad will output high during detection. The detection result can be read from the Status Bit Read (Command 0x2F).
0	0	18	0	0	0	1	1	0	0	0	Temperature Sensor	Temperature Sensor Selection
0	1	. 1000	A ₇	A ₆	A ₅	A ₄	A ₃	A ₂	A ₁	A ₀	Control	A[7:0] = 48h [POR], external temperatrure
			87 B			8.63		803	2001			sensor
												A[7:0] = 80h Internal temperature sensor
0	0	1A	0	0	0	1	1	0	1	0	Temperature Sensor	Write to temperature register.
0	1		A ₁₁	A ₁₀	A ₉	A ₈	A ₇	A ₆	A ₅	A ₄	Control (Write to	A[11:0] = 7FFh [POR]
0	1		Аз	A ₂	A ₁	Ao	0	0	0	0	temperature register)	
0	0	1B	0	0	0	1	1	0	1	1	Temperature Sensor	Read from temperature register.
1	1	10	A ₁₁	A ₁₀	A ₉	A ₈	A ₇	A ₆	A ₅	A ₄	Control (Read from	read from temperature register.
1	1		A ₃	A ₂	A ₁	Ao	0	0	0	0	temperature register)	
0	0	1C	0	0	0	1	1	1	0	0	Temperature Sensor	Write Command to External temperature
0	1	-0	A ₇	A ₆	A ₅	A ₄	A ₃	A ₂	A ₁	A ₀	Control (Write Command	sensor.
0	1		B ₇	B ₆	B ₅	B ₄	Вз	B ₂	B ₁	Bo	to External temperature sensor)	A[7:0] = 00h [POR], B[7:0] = 00h [POR],
0	1		C ₇	C ₆	C ₅	C ₄	C ₃	C ₂	C ₁	Co	sensor)	C[7:0] = 00h [POR],
												A[7:6] A[7:6] Select no of byte to be sent 00 Address + pointer 01 Address + pointer + 1st parameter 10 Address + pointer + 1st parameter + 2nd pointer 11 Address A[5:0] - Pointer Setting B[7:0] - 1st parameter C[7:0] - 2nd parameter C[7:0] - 2nd parameter The command required CLKEN=1. Refer to Register 0x22 for detail. After this command initiated, Write Command to external temperature sensor starts. BUSY pad will output high during operation.
0	0	20	0	0	1	0	0	0	0	0	Master Activation	Activate Display Update Sequence The Display Update Sequence Option is located at R22h. BUSY pad will output high during operation. User should not interrupt this operation to avoid corruption of panel images.

0	0	21	0	0	1	0	0	0	0	1	Display Update Control	RAM content option for Display	Update
0	1		A ₇	A ₆	A ₅	A ₄	A ₃	A ₂	A ₁	A ₀	1	A[7:0] = 00h [POR] B[7:0] = 00h [POR]	
0	1		B ₇	0	0	0	0	0	0	0		A[7:4] Red RAM option	
												0000 Normal	
												0100 Bypass RAM cor 1000 Inverse RAM cor	
												1000 IIIVelse KAIVI COI	iterit
												A[3:0] BW RAM option	
												0000 Normal 0100 Bypass RAM cor	tont as 0
												1000 Bypass RAM cor	
												B[7] Source Output Mode 0 Available Source from S	0 to \$175
												Available Source from S	
			8		%					(C			
0	0	22	0	0	1	0	0	0	1	0	Display Update	Display Update Sequence Opti	
0	1		A ₇	A ₆	A ₅	A ₄	A ₃	A ₂	A ₁	A ₀	Control 2	Enable the stage for Master Ac A[7:0]= FFh (POR)	tivation
												Operating sequence	Parameter
												Enable clock signal	(in Hex) 80
												Disable clock signal	01
												Enable clock signal	CO
												→ Enable Analog Disable Analog	03
												→ Disable clock signal	03
												Enable clock signal	-
												→ Load LUT with DISPLAY Mode 1→ Disable clock signal	91
												Enable clock signal → Load LUT with DISPLAY Mode 2	99
												→ Disable clock signal	
												Enable clock signal	
												 → Load temperature value → Load LUT with DISPLAY Mode 1 	B1
												→ Disable clock signal Enable clock signal	
												→ Load temperature value	B9
												 → Load LUT with DISPLAY Mode 2 → Disable clock signal 	
												Enable clock signal	
												 → Enable Analog → Display with DISPLAY Mode 1 	C7
												→ Disable Analog	
												→ Disable OSC Enable clock signal	
												→ Enable Analog → Display with DISPLAY Mode 2	CF
												→ Disable Analog → Disable OSC	1700
												Enable clock signal → Enable Analog	
												 → Load temperature value → DISPLAY with DISPLAY Mode 1 	F7
												→ Disable Analog→ Disable OSC	
												Enable clock signal	
												→ Enable Analog → Load temperature value	FF
												 → DISPLAY with DISPLAY Mode 2 → Disable Analog 	
-												→ Disable OSC	
0	0	24	0	0	1	0	0	1	0	0	Write RAM (Black White)	After this command, data entrie	s will be
	SW.	=======================================	100	S-2	154	950		1 95	(5)	1 255	/ RAM 0x24	written into the BW RAM until a	nother
												command is written. Address p advance accordingly	ointers will
												For Write pixel: Content of Write RAM(BW) =	1
												For Black pixel:	
												Content of Write RAM(BW) =	0

	man	-	ble									
R/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Description
0	0	26	0	0	1	0	0	1	1	0	Write RAM (RED) / RAM 0x26	After this command, data entries will be written into the RED RAM until another command is written. Address pointers will advance accordingly.
												For Red pixel: Content of Write RAM(RED) = 1 For non-Red pixel [Black or White]: Content of Write RAM(RED) = 0
0	0	27	0	0	1	0	0	1	1	1	Read RAM	After this command, data read on the MCU bus will fetch data from RAM. According to parameter of Register 41h to select reading RAM0x24/ RAM0x26, until another command is written. Address pointers will advance accordingly. The 1st byte of data read is dummy data.
0	0	28	0	0	1	0	1	0	0	0	VCOM Sense	Enter VCOM sensing conditions and hold for duration defined in 29h before reading VCOM value. The sensed VCOM voltage is stored in register The command required CLKEN=1 and ANALOGEN=1 Refer to Register 0x22 for detail.
												BUSY pad will output high during operation.
0	0	29	0	0	1	0	1	0	0	1	VCOM Sense Duration	Stabling time between entering VCOM
0	1	23	0	1	0	0	A ₃	A ₂	A ₁	Ao	V CON Sense Duration	sensing mode and reading acquired.
•			5			0	7.5	72	A	7.0		A[3:0] = 9h, duration = 10s. VCOM sense duration = (A[3:0]+1) sec
0	0	2A	0	0	1	0	1	0	1	0	Program VCOM OTP	Program VCOM register into OTP
												The command required CLKEN=1. Refer to Register 0x22 for detail.
									N.			BUSY pad will output high during operation.
0	0	2B	0	0	1	0	1	0	1	1	Write Register for VCOM	This command is used to reduce glitch
0	1	20	0	0	0	0	0	1	0	0	Control	when ACVCOM toggle. Two data bytes
0	1		0	1	1	0	0	0	1	1	-	D04h and D63h should be set for this command.

	D/C#	d Ta	CALL OF	DC	DE	D4	Da	Da	D4	D0	Commond	Descri	tion		
			D7	D6	D5	D4	D3	D2	D1	D0	Command	Descrip			1011111
0	0	2C	0	0	1	0	1	1	0	0	Write VCOM register		COM registe 00h [POR]		ICU interface
0	1		A ₇	A_6	A ₅	A ₄	A ₃	A ₂	A ₁	A ₀		A[1.0] -	OUII [FOR]		
												A[7:0]	VCOM	A[7:0]	VCOM
												08h	-0.2	44h	-1.7
												0Ch	-0.3	48h	-1.8
												10h	-0.4	4Ch	-1.9
												14h	-0.5	50h	-2
												18h	-0.6	54h	-2.1
												1Ch	-0.7	58h	-2.2
												20h	-0.8	5Ch	-2.3
												24h	-0.9	60h	-2.4
												28h	-1	64h	-2.5
												2Ch	-1.1	68h	-2.6
												30h	-1.2	6Ch	-2.7
												34h	-1.3	70h	-2.8
												38h	-1.4	74h	-2.9
												3Ch	-1.5	78h	-3
												40h	-1.6	Other	NA
										_			100 E X		2000000
0	0	2D	0	0	1	0	1	1	0	1	OTP Register Read for	Read R	Register for	Display (Option:
1	1	100	A ₇	A ₆	A ₅	A ₄	A ₃	A ₂	A ₁	Ao	Display Option	The latest the same of the sam			•
1	1		B ₇	B ₆	B ₅	B ₄	B ₃	B ₂	B ₁	Bo			VCOM OT		on
1	1		C ₇		C ₅	C ₄	C ₃	C ₂	C ₁	Co	1	(Comm	nand 0x37,	Byte A)	
				C ₆	_	-			_	_		D[7:0]-	VCOM Reg	nictor	
1	1		D ₇	D ₆	D ₅	D ₄	D ₃	D ₂	D ₁	D ₀			and 0x2C)		
1	1		E ₇	E ₆	E ₅	E ₄	E ₃	E ₂	E ₁	Eo		(COIIII	iana oxzo)		
1	1		F ₇	F ₆	F ₅	F ₄	F ₃	F ₂	F ₁	Fo		C[7:0]~	-G[7:0]: Dis	play Mod	le
1	1		G ₇	G ₆	G ₅	G ₄	G ₃	G ₂	G ₁	Go		(Comm	nand 0x37,	Byte B to	Byte F)
1	1		H ₇	H ₆	H ₅	H ₄	Нз	H ₂	H₁	H₀		[5 byte:	s]		
1	1		17	16	15	14	l ₃	l ₂	I ₁	I ₀		1117.01	IZEZ-01- VAZ-		
1	1		J ₇	J ₆	J ₅	J ₄	J ₃	J ₂	J ₁	Jo			-K[7:0]: Wa nand 0x37,		
1	1		K ₇	K ₆	K ₅	K ₄	K ₃	K ₂	K ₁	K ₀		[4 byte:		Dyle G it	Dyle 3)
-			IX/	116	113	114	13	102	IXI	IXO		[].			
0	0	2E	0	0	1	0	1	1	1	0	User ID Read	Read 10	Byte User	ID store	ed in OTP:
1	1		A ₇	A ₆	A ₅	A ₄	Аз	A ₂	A ₁	Ao		A[7:0]]~	J[7:0]: Use		Byte A and
1	1		B ₇	B ₆	B ₅	B ₄	Вз	B ₂	B ₁	Bo		Byte J)	[10 bytes]		
1	1		C ₇	-WW9998	C ₅	C ₄	C ₃	C ₂	C ₁	Co					
				C ₆	_			- 22		_					
1	1		D ₇	D ₆	D ₅	No. of the last	D ₃	D ₂	D ₁	D ₀					
1	1		E ₇	E ₆	E ₅	E ₄	E ₃	E ₂	E ₁	Εo					
1	1		F ₇	F ₆	F ₅	F ₄	F ₃	F ₂	F ₁	Fo					
1	1		G ₇	G ₆	G ₅	G ₄	G ₃	G ₂	G ₁	Go					
1	1		H ₇	H ₆	H ₅	H ₄	Нз	H ₂	H₁	Ho					
1	1		17	l ₆	15	14	l ₃	l ₂	I ₁	lo	1				
1	1		J ₇	J ₆	J ₅	J ₄	J ₃	J ₂	J₁	Jo					
		25									Status Bit Dood	Docat IC	atatus Dir I	DOD 0:-0	141
0	0	2F	0	0	1	0	1	1	1	1	Status Bit Read		status Bit [1] ig [POR=0]
1	1		0	0	A ₅	A ₄	0	0	A ₁	A ₀		0: Ready		COUOTI II	19 [1 OIN-0]
												1: Not Re			
													I Detection	flag [POI	R=0]
												0: Norma		- D	100001
												1: VCI lo A[3]: [PC	wer than th	ie Detect	ievei
													sy flag [POI	R=01	
												0: Norma		. 0]	
												1: BUSY			
													hip ID [PO	R=01]	
												Dem			
												Remark:	A[4] status	are not	valid after
													they need		
													d 0x14 and		
- 1	- 1														IG OX IO

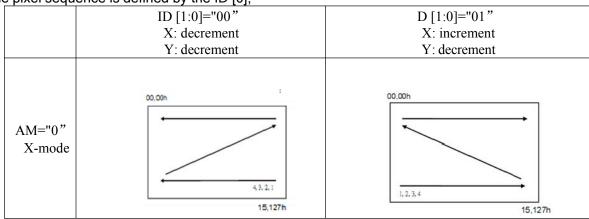
0	0	30	0	0	1	1	0	0	0	0	Program WS OTP	Program OTP of Waveform Setting The contents should be written into RAM before sending this command. The command required CLKEN=1. Refer to Register 0x22 for detail. BUSY pad will output high during operation.
0	0	31	0	0	1	1	0	0	0	1	Load WS OTP	Load OTP of Waveform Setting The command required CLKEN=1. Refer to Register 0x22 for detail. BUSY pad will output high during operation.
0 0 0 0	0 1 1 1 1 1	32	0 A ₇ B ₇ :	0 A ₆ B ₆ :	1 A ₅ B ₅	1 A ₄ B ₄ :	0 A ₃ B ₃ :	0 A ₂ B ₂ :	1 A ₁ B ₁	0 A ₀ B ₀	Write LUT register	Write LUT register from MCU interface [153 bytes], which contains the content of VS[nX-LUTm], TP[nX], RP[n], SR[nXY], FR[n] and XON[nXY] Refer to Session 6.7 WAVEFORM SETTING
0	0	34	0	0	1	1	0	1	0	0	CRC calculation	CRC calculation command For details, please refer to SSD1680 application note. BUSY pad will output high during operation.
0	0	35	0	0	1	1	0	1	0	1	CRC Status Read	CRC Status Read A[15:0] is the CRC read out value
1	1		A ₁₅	A ₁₄	A ₁₃	A ₁₂	A ₁₁	A ₁₀	A ₉	A ₈		A (16.6) to the error road out value
0	0	36	0	0	1	1	0	1	1	0	Program OTP selection	Program OTP Selection according to the OTP Selection Control [R37h and R38h] The command required CLKEN=1. Refer to Register 0x22 for detail. BUSY pad will output high during operation.
0	0	37	0	0	1	1	0	1	1	1	Write Register for Display	Write Register for Display Option
0	1		A ₇	0	0	0	0	0	0	0	Option	A[7] Spare VCOM OTP selection 0: Default [POR]
0	1		B ₇	B ₆	B ₅	B ₄	Вз	B ₂	B ₁	B ₀		1: Spare
0	1		C ₇	C ₆	C ₅	C ₄	C ₃	C ₂	C ₁	C ₀		B[7:0] Display Mode for WS[7:0]
0	1		D ₇	E ₆	D ₅	E ₄	E ₃	E ₂	D ₁	E ₀		C[7:0] Display Mode for WS[15:8]
0	1		0	F ₆	0	0	F ₃	F ₂	F ₁	Fo		D[7:0] Display Mode for WS[23:16] E[7:0] Display Mode for WS[31:24]
0	1		G ₇	G ₆	G ₅	G ₄	G ₃	G ₂	G ₁	Go		F[3:0 Display Mode for WS[35:32]
0	1		H ₇	H ₆	H ₅	H ₄	Нз	H ₂	H ₁	H₀		0: Display Mode 1 1: Display Mode 2
0	1		J ₇	J ₆	J ₅	J ₄	J ₃	J ₂	J ₁	J ₀		F[6]: PingPong for Display Mode 2 0: RAM Ping-Pong disable [POR] 1: RAM Ping-Pong enable G[7:0]~J[7:0] module ID /waveform version.
												Remarks: 1) A[7:0]~J[7:0] can be stored in OTP 2) RAM Ping-Pong function is not support for Display Mode 1

0	0	38	0	0	1	1	1	0	0	0	Write Register for User ID	Write Register for User ID
0	1	-	A ₇	A ₆	A ₅	A ₄	A ₃	A ₂	A ₁	Ao	Trino regional for doci 12	A[7:0]]~J[7:0]: UserID [10 bytes]
0	1		B ₇	B ₆	B ₅	B ₄	Вз	B ₂	B ₁	Bo		Remarks: A[7:0]~J[7:0] can be stored in
0	1		C ₇	C ₆	C ₅	C ₄	Сз	C ₂	C ₁	Co		OTP
0	1		D ₇	D ₆	D ₅	D ₄	Dз	D ₂	D ₁	D ₀		
0	1		E ₇	E ₆	E ₅	E ₄	E ₃	E ₂	E ₁	E ₀		
0	1		F ₇	F ₆	F ₅	F ₄	F₃ G₃	F ₂	F ₁	F ₀		
0	1		H ₇	H ₆	H ₅	H ₄	H ₃	H ₂	H ₁	H ₀		
0	1		17	16	15	4	l ₃	l ₂	I ₁	lo		
0	1		J ₇	J ₆	J ₅	J ₄	J ₃	J ₂	J ₁	Jo		
0	1	39	0	0	0	0	0	0	0 A ₁	1 A ₀	OTP program mode	OTP program mode A[1:0] = 00: Normal Mode [POR] A[1:0] = 11: Internal generated OTP programming voltage Remark: User is required to EXACTLY follow the reference code sequences
												,
0	0	3C	0	0	1	1	1	1	0	0	Border Waveform Control	Select border waveform for VBD
0	1		A ₇	A ₆	A ₅	A4	0	A ₂	A ₁	Ao	The second secon	A[7:0] = C0h [POR], set VBD as HIZ.
												A [7:6] :Select VBD option A[7:6] Select VBD as
												00 GS Transition, Defined in A[2] and
												A[1:0] 01 Fix Level,
												Defined in A[5:4]
												10 VCOM 11[POR] HiZ
												11[POR] HiZ
												A [5:4] Fix Level Setting for VBD
												A[5:4] VBD level
												00 VSS
												01 VSH1 10 VSL
												11 VSH2
												A[2] GS Transition control A[2] GS Transition control
												0 Follow LUT
												(Output VCOM @ RED)
												1 Follow LUT
												A [1:0] GS Transition setting for VBD
												A[1:0] VBD Transition
												00 LUT0
												01 LUT1
												10 LUT2 11 LUT3
												2010
0	0	3F	0	0	1	1	1	1	1	1	End Option (EOPT)	Option for LUT end
0	1		A ₇	A ₆	A ₅	A ₄	A ₃	A ₂	A ₁	A ₀	100	A[7:0]= 02h [POR]
	10		-creation	-c+c+204H	10000000	5900-0503		endities.	0.000	No. 2010		22h Normal.
												07h Source output level keep previous output before power off
												11
0	0	41	0	1	0	0	0	0	0	1	Read RAM Option	Read RAM Option
0	1		0	0	0	0	0	0	0	A ₀		A[0]= 0 [POR]
												0 : Read RAM corresponding to RAM0x24 1 : Read RAM corresponding to RAM0x26
												1. Toda TAW Corresponding to TAWOX20
												I.
0	0	44	0	1	0	0	0	1	0	0	Set RAM X - address	Specify the start/end positions of the
0	1		0	0	A ₅	A ₄	A ₃	A ₂	A ₁	A ₀	Start / End position	window address in the X direction by an address unit for RAM
0	1		0	0	B ₅	B ₄	Вз	B ₂	B ₁	Bo		address with for IVAIVI
												A[5:0]: XSA[5:0], XStart, POR = 00h B[5:0]: XEA[5:0], XEnd, POR = 15h

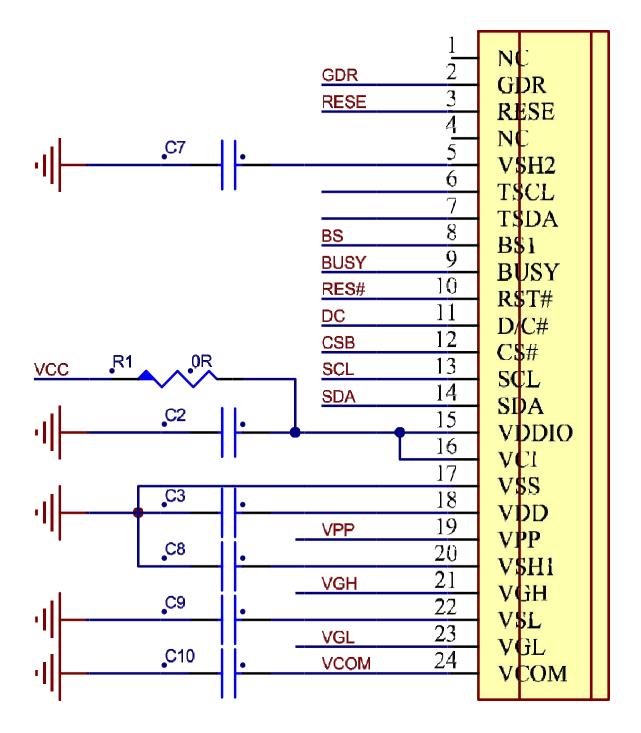
0 0 0	0 1 1	45	0 A ₇ 0 B ₇	1 A ₆ 0 B ₆	0 A ₅ 0 B ₅	0 A ₄ 0 B ₄	0 A ₃ 0 B ₃	1 A ₂ 0 B ₂	0 A ₁ 0 B ₁	1 A ₀ A ₈ B ₀	Set Ram Y- address Start / End position	Specify th window ac address u A[8:0]: YS	ddress in t nit for RAI	the Y direct	ction by an
0	1		0	0	0	0	0	0	0	B ₈		B[8:0]: YE			
0	0	46	0 A ₇	1 A ₆	0 A ₅	0 A ₄	0	1 A ₂	1 A ₁	0 A ₀	Auto Write RED RAM for Regular Pattern	Auto Write A[7:0] = 0		M for Reg	ular Pattern
												A[7]: The A[6:4]: Ste Step of all to Gate	ep Height,	POR= 00	
												A[6:4] 000	Height 8	A[6:4]	Height 128
												000	16	100	256
												010	32	110	296
												011	64	111	NA
												A[2:0]: Ste Step of all to Source			on according
												A[2:0]	Width	A[2:0]	Width
												000	8	100	128
												001	16	101	176
												010	32	110	NA
												011	64	111	NA
												BUSY pactoperation.		ut high du	ring
0	0	47	0	1	0	0	0	1	1	1	Auto Write B/W RAM for Regular Pattern	Auto Write		M for Reg	ular Pattern
0	1		A ₇	A ₆	A ₅	A ₄	0	A ₂	A ₁	A ₀	Regular Fallerii			-l DOE) = 0
												A[7]: The A[6:4]: Ste Step of all to Gate	p Height,	POR= 00	
												A[6:4]	Height	A[6:4]	Height
												000	8	100	128
												001	16	101	256
												010	32	110	296
												A[2:0]: Ste			NA On according
												to Source		. / C dil Goti	o acco. ag
												A[2:0]	Width	A[2:0]	Width
												000	8	100	128
												001	16	101	176
												010 011	32 64	110 111	NA NA
												3000 1000	Maria Visita		will output
0	0	4E	0	1	0	0	1	1	1	0	Set RAM X address	Make initia	al settinas	for the R	AM X
0	1		0	0	A ₅	A ₄	A ₃	A ₂	A ₁	A ₀	counter	address ir A[5:0]: 00	the addre	ess counte	er (AC)
0	0	4F	0	1	0	0	1	1	1	1	Set RAM Y address	Make initia			
0	1		A ₇	A ₆	A ₅	A ₄	A ₃	A ₂	A ₁	Ao	counter	address in	the addre	ess counte	
0	1		0	0	0	0	0	0	0	A ₈		A[8:0]: 00	Uh [POR].		
0	0	7F	0	1	1	1	1	1	1	1	NOP	This same	nand is se	omnty co	ommand: it
U	U	<i>,</i>	U	1.		1		1			NO!		nave any e t can be u emory Writ	effect on the	

10. Data Entry Mode Setting (11h)

This command has multiple configurations and each bit setting is described as follows:


R/W	DC	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
W	1						AM	ID1	IDO
	POR		0	0	0	0	0	1	1

ID[1:0]: The address counter is automatically incremented by 1, after data is written to the RAM when ID[1:0] = "01". The address counter is automatically decremented by 1, after data is written to the RAM when ID[1:0] = "00". The setting of incrementing or decrementing of the address counter can be made independently in each upper and lower bit of the address. The direction of the address when data is written to the RAM is set by AM bits.


AM: Set the direction in which the address counter is updated automatically after data are written to the RAM. When AM = "0", the address counter is updated in the X direction. When AM = "1", the address counter is updated in the Y direction. When window addresses are selected, data are writtento the RAM area specified by the window addresses in the manner specified with ID[1:0] and AM bits.

AIVI DILS.				
	ID [1:0]="00"	ID [1:0]="01"	ID [1:0]="10"	ID [1:0]="11"
	X: decrement	X: increment	X: decrement	X: increment
	Y: decrement	Y: decrement	Y: increment	Y: increment
AM="0" X-mode	00,00h 15,127h	00,00h 15, 127h	00,00h 15, 127h	.00,00h
AM="1" Y-mode	00,00h	00,00h 15, 127h	00,00h 15, 127h	00,00h 15, 127h

The pixel sequence is defined by the ID [0],

11. Reference circuit

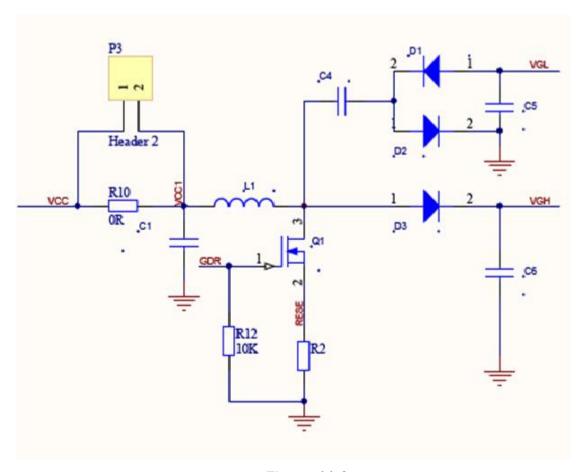


Figure. 11-2

Part Name	Value /requirement/Reference Part
C1—C9	1uF/0603;X5R/X7R;Voltage Rating: 25V
C10	1uF/0603;X7R;Voltage Rating: 25V
D1—D3	MBR0530
	1) Reverse DC voltage≥30V
	2) Forward current≥500mA
	3)Forward voltage≤430mV
R2	2.2 Ω/0603: 1% variation
Q1	NMOS:Si1304BDL/NX3008NBK
	1) Drain-Source breakdown voltage ≥30V
	2) $Vgs (th) = 0.9 (Typ) , 1.3V (Max)$
	3) Rds on $\leq 2.1 \Omega$ @ Vgs=2.5V
L1	47uH/CDRH2D18、LDNP-470NC
	Maximum DC current~420mA
	Maximum DC resistance~650m Ω
CON24Pin	0.5mm ZIF Socket 24Pins,0.5mm pitch

12. ABSOLUTE MAXIMUM RATING

Table 12-1: Maximum Ratings

Symbol	Parameter	Rating	Unit	Humidity	Unit	Note
V_{CI}	Logic supply voltage	-0.5 to +6.0	V	-	-	
T_{OPR}	Operation temperature range	0 to 40	°C	45 to 70	%	Note 12-1
Tttg	Transportation temperature range	-25 to 60	°C	45 to 70	%	Note12-2
Tstg	Storage condition	0 to 40	°C	45 to 70	%	Maximum storage time: 5 years
-	After opening the package	0 to 40	°C	45 to 70	%	

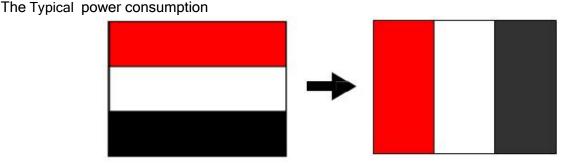
Note 12-1: We guarantee the single pixel display quality for 0-35 $^{\circ}$ C, but we only guarantee the barcode readable for 35-40 $^{\circ}$ C. Normal use is recommended to refresh every 24 hours.

Note12-2: Tttg is the transportation condition, the transport time is within 10 days for -25°C~0°C or 40°C~60°C.

Note 12-3: When the three-color product is stored. The display screen should be kept white and face up. In addition, please be sure to refresh the e-paper every three months. We suggest that the full black and full white picture could be added to clear the screen after the module is refreshed for a long time, the display effect would be better.

13. DC CHARACTERISTICS

The following specifications apply for: VSS=0V, VCI=3.3V, T_{OPR}=25 ℃.


Table 13-1: DC Characteristics

Symbol	Parameter	Test Condition	Applicabl pin	Min.	Typ.	Max.	Unit
VCI	VCI operation voltage		VCI	2.5	3	3.7	V
VIH	High level input voltage		SDA, SCL, CS#, D/C#,	0.8VDDIO			V
VIL	Low level input voltage		RES#,BS1			0.2VDDIO	V
VOH	High level output voltage	IOH = -100uA	BUSY	0.9VDDIO			V
VOL	Low level output voltage	IOL = 100uA				0.1VDDIO	V
Iupdate	Module operating current			-	3	-	mA
Isleep	Deep sleep mode	VCI=3.3V		-	-	3	uA

The Typical power consumption is measured using associated 25℃ waveform with following pattern transition: from horizontal scan pattern to vertical scan pattern. (Note 13-1)

- The listed electrical/optical characteristics are only guaranteed under the controller &waveform provided by SID.
- Vcom value will be OTP before in factory or present on the label sticker.

Note 13-1

14. Serial Peripheral Interface Timing

The following specifications apply for: VSS=0V, VCI=2.2V to 3.7V, T_{OPR} =25 $^{\circ}$ C , CL=20pF

Write mode

Symbol	Parameter	Min	Тур	Max	Unit
fSCL	SCL frequency (Write Mode)			20	MHz
tCSSU	Time CS# has to be low before the first rising edge of SCLK	60			ns
tCSHLD	Time CS# has to remain low after the last falling edge of SCLK	65			ns
tCSHIGH	Time CS# has to remain high between two transfers	100			ns
tSCLHIGH	Part of the clock period where SCL has to remain high	25			ns
tSCLLOW	Part of the clock period where SCL has to remain low	25			ns
tSISU	Time SI (SDA Write Mode) has to be stable before the next rising edge of SCL	10			ns
tSIHLD	Time SI (SDA Write Mode) has to remain stable after the rising edge of SCL	40			ns

Read mode

Symbol	Parameter	Min	Тур	Max	Unit
fSCL	SCL frequency (Read Mode)			2.5	MHz
tCSSU	Time CS# has to be low before the first rising edge of SCLK	100			ns
tCSHLD	Time CS# has to remain low after the last falling edge of SCLK	50			ns
tCSHIGH	Time CS# has to remain high between two transfers	250			ns
tSCLHIGH	Part of the clock period where SCL has to remain high	180			ns
tSCLLOW	Part of the clock period where SCL has to remain low	180			ns
tSOSU	Time SO(SDA Read Mode) will be stable before the next rising edge of SCL		50		ns
tSOHLD	Time SO (SDA Read Mode) will remain stable after the falling edge of SCL		0		ns

Note: All timings are based on 20% to 80% of VDDIO-VSS

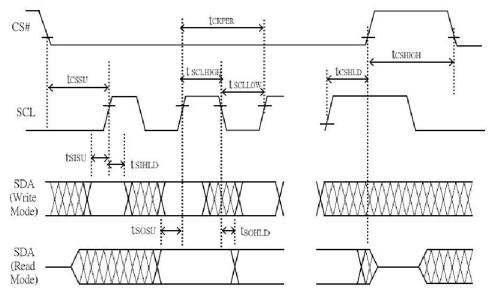
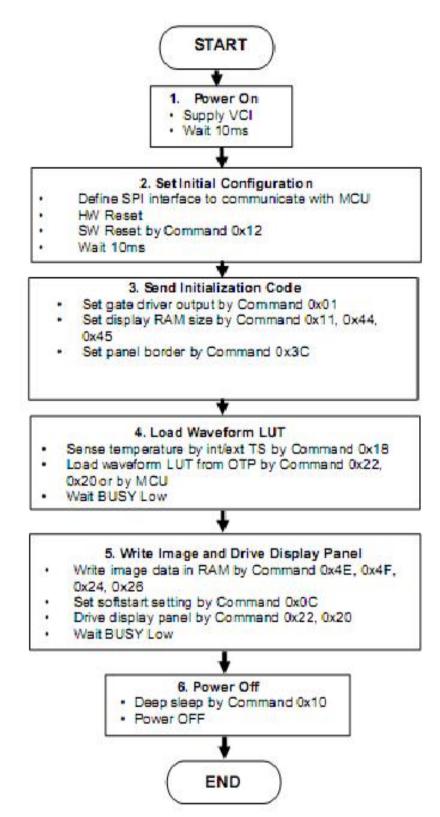


Figure 14-1: SPI timing diagram


15. Power Consumption

Parameter	Symbol	Conditions	TYP	Max	Unit	Remark
Panel power consumption during update	-	25℃	-	70	mAs	-
Deep sleep mode	-	25℃	_	3	uA	-

MAS=update average current × update time

16. Typical Operating Sequence

16.1 Normal Operation Flow

17. Optical characteristics

17.1 Specifications

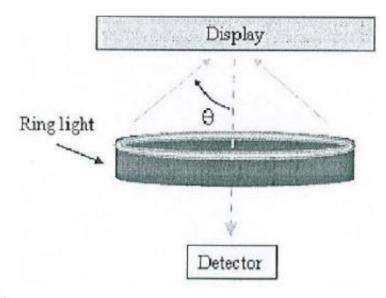
Measurements are made with that the illumination is under an angle of 45 degrees, the detection is perpendicular unlessotherwise specified.

T=25℃

						_	
YS MBOL	PARAMETER	CONDITIONS	MIN	ТҮР.	MAX	UNIT	Note
R	Reflectance	White	30	35	-	%	Note 17-1
Gn	2Grey Level	-	-	KS+(WS-KS)× (m-1)	-	L*	-
CR	Contrast Ratio	-	10	15	-		-
	B lack State L* value		-	13	14		Note 17-1
KS	Black State L* value		-	3	4		Note 17-1
WS	White State L* value		63	65	-		Note 17-1
D.C.	Red State L* value	Red	25	28	-		Note 17-1
RS	Red State a* value	Red	36	40	-		Note 17-1
D 1	Image Update	Storage and transportation	-	Update the whitescreen	-	-	-
Panel	Update Time	Operation	-	Suggest Updatedonce day	-	-	-

WS: White state, KS: Black State, RS: Red State

Note 16-1: Luminance meter: i - One Pro Spectrophotometer

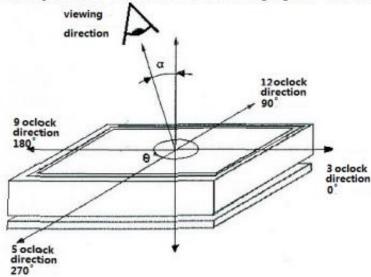

17.2 Definition of contrast ratio

The contrast ratio (CR) is the ratio between the reflectance in a full white area (R1) and the reflectance in a dark area (Rd)():

R1: white reflectance

Rd: dark reflectance

CR = R1/Rd



17.3 Reflection Ratio

The reflection ratio is expressed as:

R = Reflectance Factor white board x (L center / L white board)

L center is the luminance measured at center in a white area (R=G=B=1). L white board is the luminance of a standard whiteboard Both are measured with equivalent illumination source. The viewing angle shall be no more than 2 degrees.

18. HANDLING, SAFETY AND ENVIROMENTAL REQUIREMENTS

WARNING

The display module should be kept flat or fixed to a rigid, curved support with limited bending along the long axis. It should not be used for continual flexing and bending. Handle with care. Should the display break do not touch any material that leaks out. In case of contact with the leaked material then wash with water and soap.

CAUTION

The display module should not be exposed to harmful gases, such as acid and alkali gases, which corrode electronic components.

Disassembling the display module can cause permanent damage and invalidate the warranty agreements.

IPA solvent can only be applied on active area and the back of a glass. For the rest part, it is not allowed.

Observe general precautions that are common to handling delicate electronic components. The glass can break and front surfaces can easily be damaged. Moreover the display is sensitive to static electricity and other rough environmental conditions.

Mounting Precautions

- (1) It's recommended that you consider the mounting structure so that uneven force (ex. Twisted stress) is not applied to the module.
- (2) It's recommended that you attach a transparent protective plate to the surface in order to protect the EPD. Transparent protective plate should have sufficient strength in order to resist external force.
- (3) You should adopt radiation structure to satisfy the temperature specification.
- (4) Acetic acid type and chlorine type materials for the cover case are not desirable because the former generates corrosive gas of attacking the PS at high temperature and the latter causes circuit break by electro-chemical reaction.
- (5) Do not touch, push or rub the exposed PS with glass, tweezers or anything harder than HB pencil lead. And please do not rub with dust clothes with chemical treatment. Do not touch the surface of PS for bare hand or greasy cloth. (Some cosmetics deteriorate the PS)
- (6) When the surface becomes dusty, please wipe gently with absorbent cotton or other soft materials like chamois soaks with petroleum benzene. Normal-hexane is recommended for cleaning the adhesives used to attach the PS. Do not use acetone, toluene and alcohol because they cause chemical damage to the PS.
- (7) Wipe off saliva or water drops as soon as possible. Their long time contact with PS causes deformations and color fading.

	Data sheet status
Product specification	The data sheet contains final product specifications.

Limiting values

Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information

Where application information is given, it is advisory and dose not form part of the specification.

Product Environmental certification

ROHS

REMARK

All The specifications listed in this document are guaranteed for module only. Post-assembled operation or component(s) may impact module performance or cause unexpected effect or damage and therefore listed specifications is not warranted after any Post-assembled operation.

19. Reliability test

19.1 Reliability test items

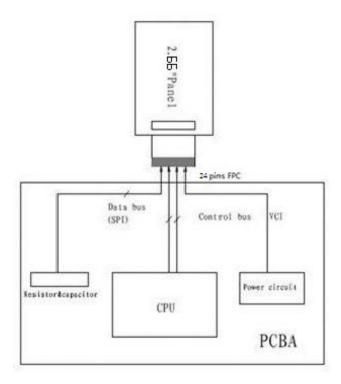
	TEST	CONDITION	REMARK
1	High-Temperature Operation	T=40℃, RH=35%RH, For 240Hr	
2	Low-Temperature Operation	$T = 0^{\circ}C$ for 240 hrs	
3	High-Temperature Storage	T=50℃ RH=35%RH For 240Hr	Test in white pattern
4	Low-Temperature Storage	T = -25 for 240 hrs Test in white pattern	Test in white pattern
5	High Temperature, High- Humidity Operation	T=40°C,RH=90%RH, For 168Hr	
6	High Temperature, High- Humidity Storage	T=50℃,RH=90%RH,For 240Hr	Test in white pattern
7	Temperature Cycle	-25 °C (30min)~60 °C (30min),50 Cycle	Test in white pattern
8	Package Vibration	1.04G,Frequency: 20~200Hz Direction: X,Y,Z Duration: 30 minutes in each direction	Full packed for shipment
9	Package Drop Impact	Drop from height of 100 cm on Concrete surface Drop sequence:1 corner, 3edges, 6face One drop for each.	Full packed for shipment
10	UV exposure Resistance	765 W/m² for 168hrs,40°C	
11	Electrostatic	Machine model:	
11	discharge	+/-250V,0 Ω ,200pF	

Actual EMC level to be measured on customer application.

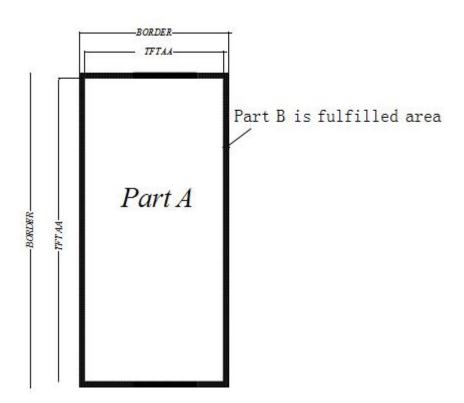
Note1: Stay white pattern for storage and non-operation test.

Note2: Operation is black/white/red pattern, hold time is

150S.

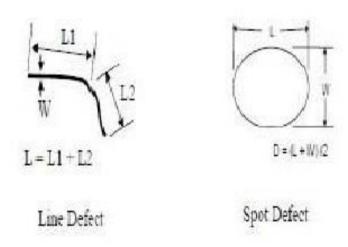

Note3: The function ,appearance, opticals should meet the requirements of the test before and after the test.

Note4: Keep testing after 2 hours placing at 20°C-25°C.


19.2 Product life time

The EPD Module is designed for a 5-year life-time with 25 $^{\circ}$ C/60%RH operation assumption. Reliability estimation testingwith accelerated life-time theory would be demonstrated to provide confidence of EPD lifetime.

20. Block Diagram



21. PartA/PartB specification

22. Point and line standard

	Ship	ment Inspect	ion Standard					
	Equipmo	ent: Electrical tes	t fixture, Point gau	ge				
Outline dimension	36.3(H)×71.82(V) ×0.9(D)	Unit: mm	Part-A	Active area	Part-B	Border area		
	Temperature	Humidity	Illuminance	Distance	Time	Angle		
Environment	19℃~25℃	55%±5%RH	800~1300Lux	300 mm	35Sec			
Defect type	Inspection method	Star	ndard	Part-2	Part-A			
		D≤0	D≤0.25 mm Ignore					
Spot	Electric Display	0.25 mm <	N≤4		Ignore			
		D>0	Not Allow		Ignore			
Display unwork	Electric Display	Not A	Allow	Not Al	Ignore			
Display error	Electric Display	Not A	Allow	Not Allow		Ignore		
		L≤2 mm,W≤0.2 mm		Ignore		Ignore		
Scratch or line defect(include dirt)	Visual/Film card	2.0mm <l≤5.0mm,0.2<w≤ 0.3mm,</l≤5.0mm,0.2<w≤ 		N≤2		Ignore		
		L>5 mm,V	W>0.3 mm	Not Allow		Ignore		
		D≤0	.2mm Ignore		re	Ignore		
PS Bubble	Visual/Film card	0.2mm≤D≤0.35mm		N≤4		Ignore		
		D>0.	35 mm	Not Al	low	Ignore		
		$X \le 6$ mm, $Y \le 0.4$ mm, Do not affect the electrode circuit (Edge of $X \le 1$ mm, $Y \le 1$ mm, Do not affect the electrode circuit (Corner Ignore						
Side Fragment Visual/Film card						4		
Remark	1. Appearance defect should not cause electrical defects;							
Kemark	2. Appearance defects should not cause dimensional accuracy problems							
	L=long W=wide D=point size N=Defects NO							

L=long W=wide D=point size